import numpy as np from typing import List, Dict, Tuple, Optional import torch from dataclasses import dataclass import time @dataclass class MatrixMarker: dimension_id: int marker_signature: bytes relationships: List[Tuple[int, float]] evolution_state: int creation_time: float last_mutation: float complexity_level: int class MarkerMatrix: def __init__( self, base_dimensions: int = 5, matrix_depth: int = 3, evolution_rate: float = 0.15 ): self.base_dimensions = base_dimensions self.matrix_depth = matrix_depth self.evolution_rate = evolution_rate # Initialize marker storage self.marker_matrices: List[Dict[int, MatrixMarker]] = [ {} for _ in range(matrix_depth) ] # Track marker relationships self.relationship_graph = {} # Evolution tracking self.evolution_history = [] # Initialize matrix patterns self.patterns = self._initialize_patterns() def generate_marker_matrix(self) -> Dict[str, List[MatrixMarker]]: """Generate a new matrix of interconnected markers""" matrix_layers = {} for depth in range(self.matrix_depth): layer_markers = [] # Generate markers for each base dimension for dim in range(self.base_dimensions): marker = self._create_marker(dim, depth) layer_markers.append(marker) # Create inter-dimensional relationships self._establish_relationships(marker, layer_markers) matrix_layers[f"depth_{depth}"] = layer_markers # Create inter-layer connections if not at top if depth > 0: self._connect_layers(matrix_layers[f"depth_{depth-1}"], layer_markers) return matrix_layers def evolve_matrix(self, threat_data: Optional[Dict] = None) -> None: """Evolve the marker matrix based on threats or time""" evolution_time = time.time() for depth in range(self.matrix_depth): for dim, marker in self.marker_matrices[depth].items(): if self._should_evolve(marker, threat_data): new_marker = self._evolve_marker(marker, threat_data) self.marker_matrices[depth][dim] = new_marker # Update relationships self._update_relationships(new_marker) # Record evolution self.evolution_history.append({ 'time': evolution_time, 'marker_id': dim, 'depth': depth, 'cause': 'threat' if threat_data else 'time' }) def _create_marker(self, dimension: int, depth: int) -> MatrixMarker: """Create a new marker with specific characteristics""" marker_signature = self._generate_signature(dimension, depth) marker = MatrixMarker( dimension_id=dimension, marker_signature=marker_signature, relationships=[], evolution_state=0, creation_time=time.time(), last_mutation=time.time(), complexity_level=self._calculate_complexity(depth, dimension) ) self.marker_matrices[depth][dimension] = marker return marker def _establish_relationships( self, marker: MatrixMarker, existing_markers: List[MatrixMarker] ) -> None: """Establish relationships between markers in the same layer""" for existing in existing_markers: if existing.dimension_id != marker.dimension_id: relationship_strength = self._calculate_relationship( marker, existing ) if relationship_strength > 0.3: # Minimum relationship threshold marker.relationships.append( (existing.dimension_id, relationship_strength) ) existing.relationships.append( (marker.dimension_id, relationship_strength) ) def _connect_layers( self, lower_layer: List[MatrixMarker], upper_layer: List[MatrixMarker] ) -> None: """Create connections between matrix layers""" for lower_marker in lower_layer: for upper_marker in upper_layer: connection_strength = self._calculate_layer_connection( lower_marker, upper_marker ) if connection_strength > 0.4: # Higher threshold for inter-layer lower_marker.relationships.append( (upper_marker.dimension_id, connection_strength) ) def _should_evolve( self, marker: MatrixMarker, threat_data: Optional[Dict] ) -> bool: """Determine if a marker should evolve""" time_factor = time.time() - marker.last_mutation > 3600 # 1 hour if threat_data: threat_factor = self._calculate_threat_pressure( marker, threat_data ) > 0.7 return threat_factor or time_factor return time_factor and np.random.random() < self.evolution_rate def _evolve_marker( self, marker: MatrixMarker, threat_data: Optional[Dict] ) -> MatrixMarker: """Evolve a marker based on conditions""" new_signature = self._mutate_signature( marker.marker_signature, threat_data ) evolved_marker = MatrixMarker( dimension_id=marker.dimension_id, marker_signature=new_signature, relationships=marker.relationships.copy(), evolution_state=marker.evolution_state + 1, creation_time=marker.creation_time, last_mutation=time.time(), complexity_level=self._increase_complexity(marker.complexity_level) ) return evolved_marker def _generate_signature(self, dimension: int, depth: int) -> bytes: """Generate a unique marker signature""" base_data = f"d{dimension}_l{depth}_{time.time()}" return hashlib.sha3_256(base_data.encode()).digest() def _calculate_complexity(self, depth: int, dimension: int) -> int: """Calculate initial complexity level for a marker""" return depth * 10 + dimension * 5 + np.random.randint(1, 10) def _calculate_relationship( self, marker1: MatrixMarker, marker2: MatrixMarker ) -> float: """Calculate relationship strength between markers""" base_strength = np.random.random() * 0.5 + 0.5 # 0.5 to 1.0 complexity_factor = min( marker1.complexity_level, marker2.complexity_level ) / max( marker1.complexity_level, marker2.complexity_level ) return base_strength * complexity_factor def _calculate_layer_connection( self, lower: MatrixMarker, upper: MatrixMarker ) -> float: """Calculate connection strength between layers""" base_strength = np.random.random() * 0.3 + 0.7 # 0.7 to 1.0 complexity_ratio = upper.complexity_level / lower.complexity_level return base_strength * min(complexity_ratio, 1.0) def _calculate_threat_pressure( self, marker: MatrixMarker, threat_data: Dict ) -> float: """Calculate threat pressure on a marker""" # Implementation depends on threat data structure return 0.8 # Placeholder def _mutate_signature( self, original: bytes, threat_data: Optional[Dict] ) -> bytes: """Mutate a marker signature""" mutation_base = original + str(time.time()).encode() if threat_data: mutation_base += str(threat_data).encode() return hashlib.sha3_512(mutation_base).digest() def _increase_complexity(self, current: int) -> int: """Increase marker complexity""" return current + np.random.randint(5, 15) def _initialize_patterns(self) -> Dict: """Initialize base patterns for marker generation""" return { 'basic': self._create_basic_patterns(), 'advanced': self._create_advanced_patterns(), 'evolutionary': self._create_evolutionary_patterns() } def _create_basic_patterns(self) -> Dict: """Create basic marker patterns""" return { 'linear': np.linspace(0, 1, 10), 'sinusoidal': np.sin(np.linspace(0, 2*np.pi, 10)), 'exponential': np.exp(np.linspace(0, 1, 10)) } def _create_advanced_patterns(self) -> Dict: """Create advanced marker patterns""" return { 'fibonacci': np.array([1, 1, 2, 3, 5, 8, 13, 21, 34, 55]), 'prime': np.array([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]), 'golden': np.array([(1 + 5**0.5)/2] * 10) } def _create_evolutionary_patterns(self) -> Dict: """Create evolutionary marker patterns""" return { 'mutation_rates': np.random.random(10), 'adaptation_thresholds': np.random.random(10) * 0.5 + 0.5, 'complexity_growth': np.exp(np.linspace(0, 2, 10)) }